
A Virtual Machine Framework for
Domain Specific Languages

David Fick

dfick@grintek.com
Derrick G. Kourie

dkourie@cs.up.ac.za

Espresso Research Group
University of Pretoria

South Africa, Pretoria, Gauteng

Bruce W. Watson
bwatson@cs.up.ac.za

ABSTRACT

A generic approach to constructing a virtual machine for a DSL in C# is studied. It proposes a generic, object-
oriented framework, in which to build the virtual machine, using an abstract instruction class and an abstract
environment class. They can be extended to provide a concrete layer whose interface constitutes the set of
instructions of a DSL. The framework allows for the generation of a variety of virtual machines each supporting
a particular DSL. Comparative performance results in relation to other DSL implementations are also provided.

Keywords
virtual machine, domain-specific language, instruction set, environment, abstract class, generic framework.

1. INTRODUCTION
Domain specific languages (DSLs) have been
discussed and used in many contexts. (See, for
example, [Arn95] and [Deu98].) In this paper the
design and implementation of a VM Framework for
DSLs is investigated, using .NET. Two other
approaches for constructing a DSL are also briefly
examined. For all three approaches, time of
execution is examined and timed points are declared.
The Shlaer-Mellor (SM) software construction
method has been adopted. A fundamental difference
between SM and other methods is the identification
of separate subject matters, called domains. An SM
domain is a separate real, hypothetical, or abstract
world inhabited by a distinct set of classes that
behave according to rules and policies characteristic
of the domain [Shl92a]. The VM Framework is
layered on top of an existing domain. As a
programming language construct, a domain is simply
represented as a namespace. The namespace forms a
home for related classes and these classes facilitate
the semantics of the DSL.

The VM Framework outlined in this study is an
extension to the typical VM, in that it defines a VM
with an empty instruction set whose environments
and instructions can later be extended.

2. FRAMEWORK DESIGN
The VM Framework provides the basic functionality
of a typical VM, including an Intermediate
Representation (IR) program loader, a program
counter, internal temporary values, and conditions on
which to build branching instructions. A proxy object
is provided through which to start up and configure
an instance of a VM. No modification to the VM
Framework itself is required and its component
classes can consequently be compiled and saved as a
library. The VM Framework consists of five main
classes each discussed in the following subsections,
and is shown in figure 1.

The EVM Class
The EVM class (Extendable Virtual Machine) is the
proxy class. Once instantiated, the object represents
an instance of a configurable VM, with an empty
instruction set and no environment. A specific
configuration can then be applied to the VM
instance. When an IR program is executed, the VM
will invoke the correct Inst instance created at load
time, defined in the configuration file. The EVM class
also encapsulates the internal temporary values in the
temps hash table. Each internal temporary value has
a unique ID, and instructions with ID operands can
gain read and write access to them. The temporary

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies’2005 conference proceedings,
ISBN 80-86943-01-1
Copyright UNION Agency – Science Press, Plzen, Czech Republic

values have an object type, so they can be assigned values most convenient to the DSL being
constructed. Internally, the EVM class contains a

EVM

temps:Hashtable
Reset()
Execute()
GetResult():object

retrieves
result

executes

operates
on has

available

loads

configures

provides
environment and
instructions

loads
program

1 1..*

1..*

1

1

1

1

1

1

1 1..*

type of

1

1 1..*

Env

GetResult():object

Config

instructions:Hashtable
environments:Hashtable
ins_env:Hashtable

Loader

Program_counter:int
Reset()

Inst

Execute()

Type

Figure 1. Information model of the VM Framework

loop in its Execute() method, that iterates
through each instruction stored by the Loader.
The very next instruction to be executed is first
fetched, and then the Execute()method of its
class is invoked. This may entail accessing an
internal temporary value, or handling a branch
instruction and saving the current program counter
value, if need be. Some branch instructions do not
require the program counter to be saved.

The Config Class
The Config class is responsible for the
configuration setup of an instantiated VM. The
Config class encapsulates three mappings:
instructions, environments and
ins_env, and are defined in Figure 2 below.

instructions : string Inst Type
environments : string Env
ins_env : string string

Figure 2. Configuration mappings
The instructions mapping maps the string
name of an instruction, to an Inst type. Derived
instances of the Inst class are only created upon
program loading. The environments mapping,
maps the string name of an environment, to an
instance of Env. As indicated below, the Env
instance will typically encapsulate some Abstract

Data Type (ADT) such as a runtime stack. The
last mapping, ins_env, maps the name of an
instruction to the name of the environment that the
instruction is to use. The name of the environment
is looked up in the environments mapping, and
the actual instantiated environment is retrieved, and
later accessed by the instruction during the
execution of the loaded IR program.

The Loader Class
The Loader class encapsulates a loaded IR
program and the program counter. The loaded
program is an array of Inst instances, for each
instruction of the program. The Loader class also
maps labels to program counter values. The
mapping is updated with a program counter entry
for each label in the program. When a branch
occurs, the index of the next instruction can be
retrieved using the mapping. The parser has the
string name of the instruction and uses the mapping
defined in the Config class to retrieve the Inst
type that is used to create the Inst instance. Thus
when a program is fully loaded, the array will
contain instances of Inst, each Inst
encapsulating its own operands ready for
execution, and the program counter is reset to the
beginning of the array.

The Inst Abstract Class
The abstract Inst class encapsulates a reference
to a Env. This will be the environment updated by
the instruction during the execution of the loaded
IR program. Note that it is only a reference and
other instructions will have a reference to the same
Env instance. The Inst class does not define
how the updates are performed, and instead
provides an abstract Execute() method, that
further extensions to the instruction are obligated to
override. While there are still instructions to be
executed by the loaded program, the Execute()
method is called for each instruction. When the
program counter has run through each instruction
instance, the program has completed execution and
the result of the execution can be retrieved.

The Env Abstract Class
The abstract Env class encapsulates some ADT, or
even a number of ADT’s that form the central data
storage mechanism for the language. The abstract
Env class does not dictate the type of ADT that is
encapsulated, and thus does not define any member
ADT. It merely provides an abstract
GetResult() method that extensions of Env are
obligated to override.

3. ENVIRONMENTS
The purpose of the abstract Env class is to have an
ADT that is updated during runtime, and that is
appropriate, or convenient for processing the
semantics of the language. For example, in a simple
real-valued expression language, a runtime stack
can be used as an environment, where operands are
first loaded onto the stack and then an arithmetic
operation is performed on the most recently pushed
values. In a ray-tracer [Wat00a] scene description
language, the main data structure may be a runtime
stack, for any arithmetic calculations, and a bitmap
image data type that is incrementally updated as the
image information is processed. Thus it is possible
to extend the environment built for an expression
language, into one that is suitable for a ray-tracer
language. Classes that extend the abstract Env
class, are obligated to override the method
GetResult(). The method GetResult()
returns an instance of an object. When an
instance of a VM has completed execution, the user
can call GetResult() to retrieve the result of
the execution. In the example of an expression
language, this would typically be a double value,
while for a ray-tracer language this result would be
an instance of a bitmap image type. Since
framework users will be aware of the data type they
are using for the result, a simple type cast to narrow

the returned instance to the user’s own result type is
sufficient.
An example of EnvExp, a concrete extension to
Env for an expression language, is provided in
Figure 3. It encapsulated a real-valued stack, and
returns the last entry on the stack. If all operations
on the stack are consistent, there should be only
one remaining value on the stack, which is the
result of evaluating the expression.

class EnvExp : Env
{
 public EnvExp () {
 stack = new Stack (100);
 }
 public override object GetResult () {
 object result;
 if (stack.isEmpty ()) {
 result = -1.0;
 }
 else {
 result = stack.peek ();
 }
 return result;
 }
 public Stack GetStack(){return stack;}
 protected Stack stack;
}

Figure 3. Example EnvExp class

4. INSTRUCTIONS
There are five classes of instructions, each
represented by an abstract class extending Inst.
The user creates their own instruction by extending
one of the classes of the abstract instructions
provided. Each instruction will take at most one
operand. The five classes of instructions are
defined in terms of their operand types. Instructions
written in the source IR program can be labeled, if
they are targeted by any branching instructions.
The token and grammar definition for parsing IR
program code is shown in Figure 4.

 LABEL : [lL][aA][bB][eE][lL]
INS : [_a-zA-Z][_a-zA-Z0-9]*
BRANCH : @[1-9][0-9]*
TEMP : $[1-9][0-9]*
DOUBLE : [-+]?[0-9]+(\.[0-9]+)?
STR : \".*\"

ir_list :
ir_list : ir_list ir_instr

ir_instr : ir_label INS
ir_instr : ir_label INS STR
ir_instr : ir_label INS TEMP
ir_instr : ir_label INS DOUBLE
ir_instr : ir_label INS LABEL BRANCH

ir_label :
ir_label : BRANCH

Figure 4. IR Token definitions and grammar

Instructions with No Operands
A Boolean property of this class,
LoadProgramCounter, in Figure 5, is an

option to recall the last saved program counter.
This allows the creation of instructions that return
from a branch into a subroutine.

 abstract class Inst_OpCode : Inst
{
 protected bool
 LoadProgramCounter = false;
}

Figure 5. The Inst_OpCode abstract class

As an example, the Add instruction is presented in
Figure 6, as used in a simple expression language.
The instruction Add simply pops the two topmost
operands off a stack and pushes the sum back on.

Instructions with a Branch Label
Instructions with a branch label are used for
conditional or unconditional branching. Two
properties are used to implement branching
semantics, depending on the requirement of the
branch condition. The first property,
BranchCond, is the actual condition to
branching. This property should be assigned to
true in the overridden Execute() method for
unconditional branching.

For conditional branching it is assigned according
to the evaluation of a boolean expression inside the
body of the Execute() method. The second
property, SaveProgramCounter, dictates
whether the program counter should be saved for a
corresponding return call into a subroutine. The
complete class is shown in Figure 7.

Instructions with a Temporary
Internally, temporaries are implemented with a
Hashtable that map temporary names (ID’s) to
object references. They are akin to conventional
registers, but a temporary can be treated as any
object type as illustrated in Figure 8. Instructions
have full access to a temporary. The instruction can
modify the temporary by typecasting the object to
the required usable type.

Instructions with a String Parameter
Instructions with string parameters are useful in
string processing applications such as those that
deal with regular expressions. This class, shown in
Figure 9, exists to provide the means to parse a
string defined in the source IR program and to store
it in the variable str.

Instructions with a Number Parameter
Similarly to the above string parameter instruction,
instructions with number parameters exist to
provide the means to parse numbers defined in the
source IR program, or to facilitate instructions that

provide any intermediate arithmetic calculation.
Real or integer numbers can be parsed. However,
internally they are treated as double values.

 class Add : Inst_OpCode
{
 public Add (EnvExp env)
 {
 this.env = env;
 }

 public override void Execute ()
 {
 double d1;
 double d2;
 double r;

 d2 = (double)
 ((EnvExp)env).GetStack().pop();

 d1 = (double)
 ((EnvExp)env).GetStack().pop();

 r = d1 + d2;

 ((EnvExp)env).GetStack().push(r);
 }
}

Figure 6. The Add instruction

 abstract class Inst_OpCode_Br : Inst
{
 protected string label;

 protected bool
 BranchCond = false;

 protected bool
 SaveProgramCounter = false;
}

Figure 7. Inst_OpCode_Br

 abstract class Inst_OpCode_ID : Inst
{
 protected string ID;
 protected object temp;
}

Figure 8. Inst_OpCode_ID

 abstract class Inst_OpCode_Str : Inst
{
 protected string str;
}

Figure 9. Inst_OpCode_Str

 abstract class Inst_OpCode_Num : Inst
{
 protected double num;
}

Figure 10. Inst_OpCode_Num

5. EXTENDING THE FRAMEWORK

The Configuration File
Before an instantiated VM can execute instructions
in a loaded IR program, the VM needs to be
configured as a specific VM type. This is achieved
through a configuration file that is initially loaded.
Once the VM has been configured, an IR program

can be loaded and executed. The configuration file
specifies the name of the class used as an
environment, as well as the names of all instruction
classes, both stored as .NET DLL’s. The
configuration file will give the complete instruction
set for a particular VM. Figure 11 gives an example
configuration file for an expression language.
The keyword environment is followed by an
environment class name, and one environment
instance will be instantiated for that class. When
instructions are instantiated at program load time,
the environment that will be used by the instruction
is named after the using keyword.

Extending the Environments
Suppose a new language is required, be it similar to
an existing language, or one that features an
entirely new syntax. If an existing language uses an
environment with an appropriate data structure then
the new language can extend the existing
environment to suite its own needs. A ray-tracer
language needs to render a scene onto a bitmap, but
may also require a means to perform numeric
calculations. Thus the EnvExp environment of the
expression language can be extended with two
extra data structures; a scene and a bitmap, giving
rise to an EnvRT environment suitable for a ray-
tracer.

Extending the Instruction Sets
Instructions are extended from one of the five
instruction classes mentioned earlier, to a set of
concrete instruction classes instantiated at load
time. Extending instruction sets with environments
that are subclasses of each other, makes for a
scalable framework in which to design a tailored
VM for a DSL. The ray-tracer language serves as
an example. The EnvRT environment is a subclass
of EnvExp, so any one of the instructions
operating on an EnvExp, can also operate on a
EnvRT, as illustrated in the configuration file for
the ray-tracer language, depicted in Figure 12.

6. BUILDING A DSL
Once a defined environment and instruction set are
in place, a front-end for the DSL needs to be
developed. Essentially this is the task of writing a
simple compiler for the DSL. This entails designing
syntax for the language using compiler tools. The
example DSL in this section was built using LG to
define the tokens for the lexer, and PG to define the
grammar for the parser. Both tools bear a familiar
syntax to most commonly used industry tools. The
translation of a small, functional expression
language can be intuitively understood by the
following illustrative example. The program in
Figure 13 evaluates the expression

 (* Create an instance of the *)
(* expression environment. *)
environment EnvExp

(* Register the following expression
(* instructions with the DVM. *)
Push using EnvExp
Store using EnvExp
Load using EnvExp
Sub using EnvExp
Add using EnvExp
Mul using EnvExp
Br using EnvExp
Brgz using EnvExp
Nop using EnvExp
Div using EnvExp

(* Some generic instructions *)
Call using EnvExp
Ret using EnvExp
Print using EnvExp

Figure 11. Example configuration file to setup
the VM for a small expression language

 (* Create an instance of the *)
(* ray-tracer environment. *)
environment EnvRT

(* These instructions were part of *)
(* the EnvExp environment. *)
Push using EnvRT
Add using EnvRT
Sub using EnvRT
Mul using EnvRT
Div using EnvRT

(* Ray-tracer specific instructions. *)
LookAt using EnvRT
Specular using EnvRT
Diffuse using EnvRT
Reflect using EnvRT
Translate using EnvRT
Quad using EnvRT

Figure 12. Configuration file to setup a ray-
tracer language borrowing some instructions
from an expression language

5,29
1

=+∑
=

nwherei
n

i

 …(1)

in a functional manner. The token and grammar
definitions for each of the five instruction types are
given in section 5, and the translated IR code for
this program is shown in Figure 14 as a concrete
example, that demonstrates the use of temporaries
(as storage for variables n and i) and also
branching instructions for the actual
implementation of the summation construct.

 let
 n = 5
in
 9 + sum (i) 1..n (2 * i)
end

Figure 13. Programmatic representation of the

summation expression (1)
The generated IR code performs operations on a
runtime stack. This stack is indeed defined as part

of the environment EnvExp discussed earlier, and
once the IR code has completed execution, the only
remaining value on the stack will be the result of
the expression.

 Push 5
 Store $1
 Push 9
 Push 1
 Store $2
 Push 0
@100 Load $2
 Load $1
 Sub
 Brgz label @200
 Push 2
 Load $2
 Mul
 Add
 Load $2
 Push 1
 Add
 Store $2
 Br label @100
@200 Nop
 Add
Figure 14. Translated IR program of the

summation expression (1)

7. COMPARATIVE RESULTS
Comparative performance results were done
between three different DSL implementations: an
interpreter, a hardcoded VM and the VM
Framework. Two time intervals were compared for
each implementation; compiling DSL source code
to IR (SRC IR), and executing the IR to observe
the semantics (IR SEM). The total time
(SRC SEM) is also calculated. The measured time
is in units of 100ns. Only the total time
(SRC SEM) is relevant for the interpreter. The
hardcoded VM has a predefined set of instructions
and the VM Framework is similarly configured
with the same set of instructions. For the purpose of
the experiment, a ray-tracer language, used to
define geometric objects to be rendered onto a
scene.
From the performance results in Figure 15, it can
be seen that using some of the reflection properties
of .NET does not necessarily impede the IR
program’s execution speed, and in this case it is
actually shown to perform better than its hardcoded
counterpart. Naturally, the interpreter is quickest to
deliver observable results, however, it will suffer
from a lack of scalability. The hardcoded VM will
suffer less from scalability problems, as it is easier
to add new instructions as part of the VM core. The
VM Framework treats environments, and
instructions that access these environments, as
separate external libraries, or DLL’s, and they do
not form part of the VM Framework’s core
execution unit. Rather, these DLL’s are configured
together as a set of building blocks to yield a
customized VM for a particular DSL. Furthermore,

the VM framework easily accommodates a scaling
up of the DSL with new constructs as the need
arises.

0

5 0 0 0 0 0

1 0 0 0 0 0 0

1 5 0 0 0 0 0

2 0 0 0 0 0 0

2 5 0 0 0 0 0

3 0 0 0 0 0 0

3 5 0 0 0 0 0

4 0 0 0 0 0 0

4 5 0 0 0 0 0

5 0 0 0 0 0 0

1 2 3
T i c k s
(1 0 0 n s)

 Legend

1 – Interpreter
2 – Hard-coded VM
3 - VM Framework

– SRC -> SEM
– SRC -> IR
- IR -> SEM

Figure 15. Comparative performance results of

three types of DSL implementations

8. CONCLUSION
This paper described a framework that allows rapid
development of DSL’s, with emphasis on language
scalability. The VM Framework also relies on
certain reflective constructs of .NET to configure
an instantiated VM at runtime, and .NET DLL’s are
used extensively to aid in scalability and
modularity. For the VM Framework to serve any
use it must be extended by a set of concrete classes
that form the instruction set and environments
suitable for a particular DSL. Typically, a domain
expert will work alongside a software practitioner
to collaboratively tailor a DSL to the expert’s
needs. Thus the syntax of constructs needs to be
refined to be as intuitive as possible, while the
practitioner needs to decide what type of
instructions are necessary to facilitate the semantics
of the constructs. This may involve a few iterations
but a flexible framework will aid in the
development lifecycle of the DSL.

REFERENCES
 [Arn95] Arnold, B. R. T., Deursen, A. v., and Res,

M. An Algebraic Specification of a Language
for Describing Financial Products. Proceedings
of the ICSE-17 Workshop on Formal Methods
Application in Software Engineering Practice,
1995

Deu98] Deursen, A. v., and Klint, P. Little
Languages: Little Maintenance? Journal of
Software Maintenance, volume 10, 1998

 [Shl92a] Shlaer, S., and Mellor, S. J. Object
Lifecycles: Modeling the World in States.
Yourdon Press, P. T. R. Prentice Hall, 1992

[Wat00a] Watt, A. 3D Computer Graphics.
Addison-Wesley, pp.342-369, 2000

http://cis.paisley.ac.uk/crow-ci0/
http://cis.paisley.ac.uk/crow-ci0/
http://cis.paisley.ac.uk/crow-ci0/

	INTRODUCTION
	FRAMEWORK DESIGN
	The EVM Class
	The Config Class
	The Loader Class
	The Inst Abstract Class
	The Env Abstract Class

	ENVIRONMENTS
	INSTRUCTIONS
	Instructions with No Operands
	Instructions with a Branch Label
	Instructions with a Temporary
	Instructions with a String Parameter
	Instructions with a Number Parameter

	EXTENDING THE FRAMEWORK
	The Configuration File
	Extending the Environments
	Extending the Instruction Sets

	BUILDING A DSL
	COMPARATIVE RESULTS
	CONCLUSION
	REFERENCES

